00001			
	PCB Design Confer Keynote Add	ence - East ress	
	September 12, 2	000	
	EMC ASPECTS OF HIGH SPEED DIGITA	FUTURE	
	By Henry W. Ot Henry Ott Consult Livingston, NJ 07 (973) 992-1793	t ants 7039 8	
ww	w.hottconsultants.com	hott@ieee.org	
© 2000 Henry W. Ott			

- Reduce Loop Area
 - PCB Technology Has Not Keep Up With the Increase in Frequency Squared
- Cancellation Techniques
 - Canceling Clock Loops
 - Multiple Decoupling Capacitors
- Spread Spectrum Techniques
 - Clock Dithering

ELECTROMAGNETIC COMPATIBILITY

© 2000 Henry W. Ott

HIGH SPEED CLOCK ROUTING GUIDELINES (in order of preference)

- Route Clock on One Layer Adjacent to a Plane
- Route Clock on Two Layers, Adjacent to the Same Plane
- Route Clock on Two Layers, Adjacent to Two Planes of the Same Type (i.e., Ground <u>or</u> Power) and Connect Planes Together With a Via Wherever there is a Signal Via
- Route Clock on Two Layers, Adjacent to Two Different Types of Planes (i.e., Ground <u>and</u> Power) and Connect Planes Together With a Decoupling Capacitor Wherever There is a Signal Via

HOC ELECTROMAGNETIC COMPATIBILITY

© 1998 Henry W. Ott

SLOT INDUCED GROUND PLANE VOLTAGE DROP (3 nS RISE-TIME SQUARE WAVE)

_/	V _{AB}	dB
0 in	15 mV	_
¼ in	20 mV	2.5
½ in	26 mV	4.8
1 in	49 mV	10.3
1½ in	75 mV	14.0
Holes	15+ mV	—

Notes:

- Slot is 0.025" Wide.
- Signal Trace Width is 0.050".
- Holes = A Pattern of Fifteen 0.052" Diam.
 Holes Along a 1" Line

© 1996 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

HOC

SI - 01017

DECOUPLING

- It is Difficult to Achieve Good Decoupling at High Frequencies (> 50 MHz)
- One Way to Achieve This is With Multiple Capacitors (2-50)
 - Make Them The Same Value
 - Spread Them Out Physically
- Another Approach is by Using Embedded PCB Capacitance
- Interdigitated Power & Ground Pins Helps Lower the IC Lead Inductance
- One of the Biggest Limitations in Using Decoupling Capacitors is the Inductance of the Pad to Via Trace.
 - Use Multiple Vias, or
 - Pad in Via Technology to Reduce This
- Another Approach is to use Multiple Capacitors Inside the IC Package Itself
- Isolated Power Planes Can be Helpful in Minimizing the Bad Side Effect of Poor Decoupling But Does Not Solve the Basic Problem

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

HOC

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

ELECTRICAL & PHYSICAL PARAMETERS

- Physical PCB Layout
 - Copper
 - Dielectric
 - Traces
 - Vias
 - Pads
- This is What We Build

- Electrical Parameters
 - Inductance
 - Capacitance
 - Resistance
 - Characteristic Impedance
- This is What The Signal Sees

ELECTROMAGNETIC

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

© 2000 Henry W. Ott

ADIG - 01003A

HIGH DENSITY INTERCONNECT

- Chip Scale Packaging (CSP)
 - Ball Grid Arrays
 - Chip on Board
 - Flip Chip
 - Reduced Pkg. Inductance
- System on a Chip (SOC)
 - Large I/O Counts (>500)
- PCB Layout/Stackup
 - Closer Spaced Layers
 - Elimination of Surface Layer Traces
 - Transmission Lines
 - Faraday Shields
- Testability Issues
 - Test Point Access

- PCB Materials
 - FR-4
 - Polyamide
 - Ceramic/Glass
 - PolyTetraFluroEthelyne (PTFE)
- Vias
 - Microvias (<6 mil)
 - Via in Pad
 - Blind Vias
 - Buried Vias
- Drilling Techniques
 - Laser
 - Plasma
 - Photo-Defined

Denser, Faster, Smaller

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

HOC

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

© 2000 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

REFERENCES

REFERENCES

- Ott, H. W., *Noise Reduction Techniques in Electronic Systems*, Second Edition, Wiley Interscience, 1988.
- Johnson, H. W. & Graham, M., *High-Speed Digital Design*, Prentice-Hall, 1993.
- Montrose, M. I., *Printed Circuit Board Design Techniques for EMC Compliance*, IEEE Press, 1996.
- Fitts, M., The Truth About Microvias, *Printed Circuit Design*, February 2000.
- Edwards, T. C., *Foundations of Microstrip Circuit Design*, Second Edition, John Wiley & Sons, 1992.
- IPC-D-317A, Design Guidelines for Electronic Packaging Utilizing High Speed Techniques, 1995.
- Wadell, B. C., *Transmission Line Design Handbook*, Artech House, 1991.
- Johnson, H., Why Digital Engineers Don't Believe in EMC, *IEEE EMC Society Newsletter*, Spring, 1998.
- Lau, J. H., Ball Grid Array Technology, McGraw-Hill, 1995.
- IEEE EMC Society web page at <www.emcs.org>.
- Henry Ott Consultants web page at <www.hottconsultants.com>.

COMPATIBILITY