F	UNDERSTANDING AND COMMON-MODE E IN HIGH-POWER ELE	CONTROLLING MISSIONS ECTRONICS	
	By Henry W. Ott Henry Ott Consult Livingston, NJ 07 (973) 992-1793	ants 039	
	www.hottconsultants.com	hott@ieee.org	
© 2001	1 Henry W. Ott	HOC ELECTROMAGNETIC COMPATIBILITY	

Page	BASIC PRINCIPLE OF EMC	
	Return Current to its Source as Locally and Compactly as Possible	
© 2001 Henr	Minimize the Loop Area yw.ott	

COMMON-MODE & DIFFERENTIAL MODE NOISE

• Differential-Mode Noise

- Involves the Normal Operation of the Circuit
- Currents Flowing Around Loops
- Is Documented
 - Schematics
 - PCB Layout
 - Wiring Diagrams
- Is Easy to Understand

- Common-Mode Noise
 - Does Not Relate to the Normal Operation of the Circuit
 - Involves Parasitics
 - Currents Flow Around Loops Usually Involving Parasitic Capacitance
 - Is Not Documented
 - Is More Difficult to Understand
 - The Noise Source and Current Path Must First be Visualized and Understood Before a Solution Can be Determined

HOC

Page 6	BASIC ANTENNA	TYPES
<u>Antenna Type</u>	Radiation Mechanism	Electromagnetic Field
Loop	Differential-Mode	Magnetic Field
Dipole	Common-Mode	Electric Field
© 2001 Henry W. Ott		HOC ELECTROMAGNETIC COMPATIBILITY

Page 8	MC REGULATIONS PERTAINING TO C-M EMISSIONS
	 North America (FCC/Industry Canada) European Union (EU)
	 Military (MIL-STD)

© 2001 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

A PROBLEM ents)
<u>Class B</u>
10 uA
10 uA
8 uA
5uA
3.5 uA

© 2001 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

THE BASIC IGBT MOTOR DRIVE PROBLEM (LOAD SIDE C-M CURRENT)

- The IGBT Switches are the C- M Voltage Source
- This Causes a Large Current (dl/dt) to Flow On the Output Leads to the Motor
- The Low Frequency Current Goes Through the Motor Windings as Intended
- The High Frequency Current, However, Capacitively Couples to The Motor Housing (Which is Usually Grounded)
- The Return Current Path Can Vary But Usually Flows Through the External Ground
 - May Capacitively Couple Back to the IGBT Drive (As Shown in the Previous Slide)
 - Or in Some Cases May Flow All the Way Back to the Power Source and From There Back to the Switches
- In All Cases, However, The Problem Arises Because of the Capacitance Between the Motor Windings and the Housing

HOC

TROMAGNETIC

COMPATIBILITY

Page 21		\searrow
	POSSIBLE SOLUTIONS	
• Po	wer Input Side of the Switch	
	- Use a Power Line Filter	
• Ou	tput (Load) Side of Switch	
_	- Use Grounding or Shielding	
	 To Return C-M Current Without Using the External Ground Path 	
—	- Use Filtering	
	 To Return the C-M Current Locally to the Switch 	
_	 Reduce the dV/dt or the Motor Capacitance (Not Usually Practical) 	
● Re Mc	member the Switch is the Source of the C-M Voltage and the otor Capacitance Provides the C-M Current Return Path	
2001 Henry W	HOC	

© 2001 Henry W. Ott

Page 27	AL FILTER ((L -	COMPONENT C FILTER)	VALUES
Frequency	<u>Capacitor</u>	Inductor	<u>Resonant Freq.</u>
<u>150 kHz</u>	<u>1 uF</u>	<u>100 uH</u>	<u>16 kHz</u>
<u>450 kHz</u>	<u>0.35 uF</u>	<u>35 uH</u>	<u>45 kHz</u>
<u>1 MHz</u>	<u>0.16 uF</u>	<u>16 uH</u>	<u>100 kHz</u>
<u>5 MHz</u>	<u>0.03 uF</u>	<u>3.2 uH</u>	<u>513 kHz</u>
<u>10 MHz</u>	<u>0.015 uF</u>	<u>1.6 uH</u>	<u>1 MHz</u>
<u>20 MHz</u>	<u>8000 pF</u>	<u>0.8 uH</u>	<u>2 MHz</u>
<u>30 MHz</u>	<u>5000 pF</u>	<u>0.5 uH</u>	<u>3 MHz</u>

Page 28

SWITCHING POWER SUPPLY NOISE SOURCES AND COUPLING PATHS

- The Most Common Noise Source is the Switching Transistor (Noise Will Be at Harmonics of the Switching Frequency, Normally Decreasing With Frequency -- Resonances May Cause "Pop-Ups")
- Second is the Bridge Rectifier Noise (Noise Will Occur at Multiples of 120 Hz and is Differential-Mode)
- Third is Parasitic Oscillation (Usually Occurs at High Frequency and is Not Related to The Switching Frequency or 120 Hz)
- Fourth The Interactions Between the Power Supply & the Power Line Filter (The Power Supply Has a Negative Input Impedance at Power Line Frequencies and Can Oscillate if Terminated Improperly)
- Lastly, High Q Resonances & Other Miscellaneous Sources
- Parasitic Capacitance Provides the C-M Coupling Path
 - Switching Transistor to Heat Sink Capacitance
 - Primary to Secondary of Transformer Capacitance
 - Reduce These Capacitances as Much as Possible

© 2001 Henry W. Ott

ELECTROMAGNETIC COMPATIBILITY

Page 34	AC POWER LINE FILTERS	
	The Performance Of An AC Power Line Filter Is As Much A Function Of How And Where the Filter Is Mounted, And How The Leads Are Run To It, As It Is Of The Electrical Design Of The Filter.	
© 2001 Henry W. C		

© 2001 Henry W. Ott

 Controlling C-M Emissions is Not "Black Magic" One Must, However, Be Able to Visualize the Noise Source and the Coupling Mechanism (The Invisible Schematic) The dV/dt Generator The Parasitic Capacitance The C-M Current Loop Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Breblame 		SUMMARY
 One Must, However, Be Able to Visualize the Noise Source and the Coupling Mechanism (The Invisible Schematic) The dV/dt Generator The Parasitic Capacitance The C-M Current Loop Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most Compacting Will Solve Most Compacting Will Solve Most Compacting Decidement 	• Contro	olling C-M Emissions is Not "Black Magic"
 The dV/dt Generator The Parasitic Capacitance The C-M Current Loop Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Problems 	 One M Coupli 	ust, However, Be Able to Visualize the Noise Source and the ng Mechanism (The Invisible Schematic)
 The Parasitic Capacitance The C-M Current Loop Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Problems 	— Th	e dV/dt Generator
 The C-M Current Loop Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Brobleme 	— Tł	e Parasitic Capacitance
 Once One Has an Understanding of the C-M Current Loop, the Required Control Techniques Become Fairly Straightforward and Obvious C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Problems 	— Tł	e C-M Current Loop
 C-M Currents Must be Returned Locally and Compactly (Small Loop Area) Proper Use of Filtering, Grounding, and Shielding Will Solve Most C M Emission Broblems 	 Once Require Obviore 	One Has an Understanding of the C-M Current Loop, the ed Control Techniques Become Fairly Straightforward and us
• Proper Use of Filtering, Grounding, and Shielding Will Solve Most	• C-M C Loop	urrents Must be Returned Locally and Compactly (Small Area)
C-IVI Emission Problems	 Proper C-M Er 	[•] Use of Filtering, Grounding, and Shielding Will Solve Most mission Problems
		ЦОС

COMPATIBILITY

